Abstract

AbstractIn the current complex situations of electronic intelligence (ELINT), the authors present a radar emitter structure (RES) identification method based on deep learning at a new level to address the issue of incomplete cognitive information. Firstly, due to the fact that existing simulation data cannot fully reflect the structure features of the entire radar emitter, the structure feature‐level RES model is built using direct digital synthesiser (DDS) technology and radio frequency (RF) simulation platform. Afterwards, considering that the structure features are reflected in the frequency domain, a stacked frequency sparse auto encoder (sFSAE) network is constructed by adding a constraint term in frequency domain to the loss function of sparse auto encoder (SAE). Using deep learning to extract structure features with constraints in different domains is instructive for feature extraction techniques under variable operating parameters. Finally, the extracted structure features are input into the Softmax classifier to perform the identification from the radar signal to the RES. The experimental results show that the proposed method has high generalisation ability and robustness under different modulation types, different operating parameters and different signal to noise ratio (SNR). It also has a high identification rate even for untrained modulated signals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call