Abstract

In this paper we deal with the problem of detecting an extended target embedded in homogeneous Gaussian interference with unknown but structured covariance matrix. We model the possible target echo, from each range bin under test, as a deterministic signal with an unknown scaling factor accounting for the target response. At the design stage, we exploit some a-priori knowledge about the operating environment enforcing the inverse interference plus noise covariance matrix to belong to a set described via unitary invariant continuous functions. Hence, we derive the constrained Maximum Likelihood (ML) estimates of the unknown parameters, under both the H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> and H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> hypotheses, and design the Generalized Likelihood Ratio Test (GLRT) for the considered decision problem. At the analysis stage, we assess the performance of the devised GLRT for some covariance matrix uncertainty sets of practical relevance both for spatial and Doppler processing. The results highlight that correct use of the a-priori knowledge can lead to a detection performance quite close to the optimum receiver which supposes the perfect knowledge of the interference plus noise covariance matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.