Abstract
Abstract The major goal of this two-part study is to assimilate radar data into the high-resolution Advanced Research Weather Research and Forecasting Model (ARW-WRF) for the improvement of short-term quantitative precipitation forecasting (QPF) using a four-dimensional variational data assimilation (4D-Var) technique. In Part I the development of a radar data assimilation scheme within the WRF 4D-Var system (WRF 4D-Var) and the preliminary testing of the scheme are described. In Part II the performance of the enhanced WRF 4D-Var system is examined by comparing it with the three-dimensional variational data assimilation system (WRF 3D-Var) for a convective system over the U.S. Great Plains. The WRF 4D-Var radar data assimilation system has been developed with the existing framework of an incremental formulation. The new development for radar data assimilation includes the tangent-linear and adjoint models of a Kessler warm-rain microphysics scheme and the new control variables of cloud water, rainwater, and vertical velocity and their error statistics. An ensemble forecast with 80 members is used to produce background error covariance. The preliminary testing presented in this paper includes single-observation experiments as well as real data assimilation experiments on a squall line with assimilation windows of 5, 15, and 30 min. The results indicate that the system is able to obtain anisotropic multivariate analyses at the convective scale and improve precipitation forecasts. The results also suggest that the incremental approach with successive basic-state updates works well at the convection-permitting scale for radar data assimilation with the selected assimilation windows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.