Abstract

Abstract The characteristics of radar echoes for 12 thunderstorm days in the vicinity of Sydney, Australia, in the summer of 1995/96 have been examined using an objective methodology for storm identification and tracking. The spatial distribution of identified storms shows a maximum in frequency and intensity along the east side of the mountains that lie inland from the coast. Characteristics such as storm volume, area, and height are shown to have a lognormal frequency distribution. Reflectivity also has a skewed frequency distribution with a prevalence of lower reflectivity storms. Both the maximum reflectivity and storm height are shown to be correlated with the logarithm of storm volume. Although small storms predominate, the bulk of precipitation flux comes from the relatively few large-scale storms. It is also shown that storms generally move or propagate in a direction slightly to the left of the mass-weighted mean wind for the surface-to-300-hPa layer at a speed slightly less than the mean speed. ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.