Abstract

In this paper, four adaptive radar architectures for target detection in heterogeneous Gaussian environments are devised. The first architecture relies on a cyclic optimization exploiting the Maximum Likelihood Approach in the original data domain, whereas the second detector is a function of transformed data which are normalized with respect to their energy and with the unknown parameters estimated through an Expectation-Maximization-based alternate procedure. The remaining two architectures are obtained by suitably combining the estimation procedures and the detector structures previously devised. Performance analysis, conducted on both simulated and measured data, highlights that the architecture working in the transformed domain guarantees the constant false alarm rate property with respect to the interference power variations and a limited detection loss with respect to the other detectors, whose detection thresholds nevertheless are very sensitive to the interference power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.