Abstract

Abstract A broadband radar absorbing combinatorial foam metamaterial (CFMM) was developed and evaluated via simulation and experimentation. CFMM was constructed using silicon carbide/carbon (SiC/C) foam material, a FR4 dielectric material, and a metal pattern. The SiC/C foam material was prepared using a template. The metal pattern consists of a square ring with four split gaps in the middle of the ring. As a result of this new design, the influence of metal pattern design geometrical dimensions on the absorption performance of CFMM were discussed, as absorption performance can be adjusted by changing the geometric parameters of the metal patterns. The physical absorption mechanism was clarified through analysis of the field distribution and impedance. Finally, a lightweight broadband CFMM was designed. The designed CFMM exhibit a −10 dB absorption bandwidth from 4 GHz to 18 GHz with a total bulk density of 0.56 g/cm3. Additionally, the absorption performance of the designed CFMM in the case of oblique incidence was studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.