Abstract
At present, time series prediction methods are widely applied for Human–Computer Intelligent Systems in various fields such as Finance, Meteorology, and Medicine. To enhance the accuracy and stability of the prediction model, this paper proposes a time series prediction method called RAdam-Dual stage Attention mechanism-Nested Long Short-Term Memory (RAdam-DA-NLSTM). First, we design a Nested LSTM (NLSTM), which adopts a new internal LSTM unit structure as the memory cell of LSTM to guide memory forgetting and memory selection. Then, we design a self-encoder network based on the Dual stage Attention mechanism (DA-NLSTM), which uses the NLSTM encoder based on the input attention mechanism, and uses the NLSTM decoder based on the time attention mechanism. Additionally, we adopt the RAdam optimizer to solve the objective function, which dynamically selects Adam and SGD optimizers according to the variance dispersion and constructs the rectifier term to fully express the adaptive momentum. Finally, we use multiple datasets, such as PM2.5 data set, stock data set, traffic data set, and biological signals, to analyze and test this method, and the experimental results show that RAdam-DA-NLSTM has higher prediction accuracy and stability compared with other traditional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.