Abstract

We have recently demonstrated the formation of an atypical histone H2A-H2B dimer-enriched chromatin at the coding sequence of the active gene in the absence of Rad26p in vivo. However, the mechanisms for such a surprising observation remain unknown. Here, using a ChIP assay, we demonstrate that Rad26p promotes the eviction of histone H2A-H2B dimer and prevents the reassociation of the dimer with naked DNA in the wake of elongating RNA polymerase II at the coding sequence of the active GAL1 gene. Thus, the absence of Rad26p leads to the generation of an atypical histone H2A-H2B dimer-enriched chromatin at the active coding sequence in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.