Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases on wheat in the United States. In 2011, severe wheat stripe rust caused extensive application of fungicides in the western United States, and the disease was more widespread and caused more yield loss in the eastern United States in 2012. In this study, we characterized virulences and identified races of P. striiformis f. sp. tritici by testing the stripe rust samples collected throughout the United States in 2011 and 2012 on a set of 18 Yr single-gene differentials. In 2011, 35 races were identified from 349 viable samples collected from 19 states of the United States and Ontario province of Canada, with PSTv-11 (35.5%), PSTv-37 (12.6%), PSTv-14 (11.8%), PSTv-4 (5.4%), and PSTv-34 (3.4%) as the top five predominant races. In 2012, 23 races were identified from 341 viable samples collected from 24 states of the United States and Ontario of Canada, with PSTv-37 (47.5%), PSTv-11 (11.7%), PSTv-14 (10.0%), PSTv-52 (9.4%), and PSTv-48 (4.4%) as the top five predominant races. Nationally, PSTv-37, PSTv-52, and PSTv-34 were most widely distributed, while PSTv-11, PSTv-14, PSTv-4, and PSTv-48 were mostly detected in the western United States. High frequencies (>80%) were detected for virulences to Yr6, Yr7, Yr8, Yr9, Yr17, Yr27, Yr44, and YrExp2; moderate frequencies (20 to 80%) for virulences to Yr1, Yr43, YrTr1, and YrTye; low frequencies (<10%) for virulences to Yr10, Yr24, Yr32, and YrSP; and virulences to Yr5 and Yr15 were not detected, indicating that these two genes are still effective against the P. striiformis f. sp. tritici population in the United States. Both positive and negative associations were identified between some of the virulences. In total, 55 races identified from 2010 to 2012 in the United States were clustered into two major virulence groups, and dynamics of predominant races and virulence frequencies for the 3 years were presented and discussed. This information is useful for making decisions when screening wheat germplasm for developing stripe-rust-resistant wheat cultivars and managing the disease by growing cultivars with adequate and durable resistance. The severe epidemics and the occurrence of the large number of races in the 3 years indicate that efforts should be made to use diverse resistance genes, especially to combine effective all-stage resistance genes with genes for high-temperature adult-plant resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.