Abstract

AbstractImproving organic devices via molecular design is challenging and difficult to rationalize because individual molecular properties always convolute with intermolecular interaction and crystallinity to contribute the device performance. In this work, it is demonstrated for the first time that racemic effect can be utilized to effectively improve memory device performance. A pair of enantiomers and their mixture are used to prepare organic multilevel resistive random access memory (RRAM) devices. The RRAM devices fabricated from the equimolar mixture of enantiomers are of the lowest onset voltages and highest ternary device yield, independent of the preparation methods. Structural analysis of the powder, film, and single crystal of the equimolar mixture reveals formation of a real racemic compound, where π–π stacking in contrast to the only C–H–π interaction in the film of pure enantiomers appears. Since individual enantiomer has identical electronic properties, the discrepancy in device performance is attributed to the different intermolecular interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.