Abstract

Mutational activation of RAC1 is detected in ~7% of cutaneous melanoma, with the most frequent mutation (RAC1C85T ) encoding for RAC1P29S . RAC1P29S is a fast-cycling GTPase that leads to accumulation of RAC1P29S -GTP, which has potentially pleiotropic regulatory functions in melanoma cell signaling and biology. However, the precise mechanism by which mutationally activated RAC1P29S propagates its pro-tumorigenic effects remains unclear. RAC1-GTP is reported to activate the beta isoform of PI3'-kinase (PIK3CB/PI3Kβ) leading to downstream activation of PI3'-lipid signaling. Hence, we employed both genetic and isoform-selective pharmacological inhibitors to test if RAC1P29S propagates its oncogenic signaling in melanoma through PI3Kβ. We observed that RAC1P29S -expressing melanoma cells were largely insensitive to inhibitors of PI3Kβ. Furthermore, RAC1P29S melanoma cell lines showed variable sensitivity to pan-class 1 (α/β/γ/δ) PI3'-kinase inhibitors, suggesting that RAC1-mutated melanoma cells may not rely on PI3'-lipid signaling for their proliferation. Lastly, we observed that RAC1P29S -expressing cell lines also showed variable sensitivity to pharmacological inhibition of the RAC1→PAK1 signaling pathway, questioning the relevance of inhibitors of this pathway for the treatment of patients with RAC1-mutated melanoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.