Abstract

Epithelial cells are characterized by the ability to form sheets of cells that surround fluid-filled lumens. Cells in these sheets exhibit a characteristic subcellular polarity, with an apical pole that faces the lumen and a basolateral pole that is in contact with other cells and the extracellular matrix (ECM). To investigate the signaling events required for polarization and lumen formation, we have taken advantage of the ability of Madin-Darby canine kidney (MDCK) cells to dynamically remodel their polarity in response to changes in ECM cues. When MDCK cells are grown in suspension culture, they form multicellular "inside-out" cysts with apical proteins found on the peripheral surface and basolateral markers on the interior surface. When these inside-out cysts are embedded in ECM, they rapidly reorient their polarity: apical proteins become localized to the inside surface, and basolateral proteins are found on the surface that contacts ECM. Here we have characterized the signaling requirements for these early molecular reorientation events. Specifically, expression of a dominant-negative form of Rac1 (DN-Rac1) blocks the reorientation of polarity. Phosphoinositide 3'-kinase is required for apical membrane protein remodeling from the initial apical membrane surface. Cells expressing DN-Rac1 fail to detectably activate the PI 3-kinase/protein kinase B pathway. Last, we found that atypical protein kinase C (aPKC) is also required for reorientation of polarity, since an inhibitor of atypical PKC blocks reorientation. This effect cannot be overcome by constitutively active Rac1, demonstrating that both Rac1 and atypical PKC are required for reorientation of cellular polarity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.