Abstract

One of the earliest pathological features characterizing Alzheimer’s disease (AD) is the loss of dendritic spines. Among the many factors potentially mediating this loss of neuronal connectivity, the contribution of Rho-GTPases is of particular interest. This family of proteins has been known for years as a key regulator of actin cytoskeleton remodeling. More recent insights have indicated how its complex signaling might be triggered also in pathological conditions. Here, we showed that the Rho-GTPase family member Rac1 levels decreased in the frontal cortex of AD patients compared to non-demented controls. Also, Rac1 increased in plasma samples of AD patients with Mini-Mental State Examination < 18 compared to age-matched non demented controls. The use of different constitutively active peptides allowed us to investigate in vitro Rac1 specific signaling. Its activation increased the processing of amyloid precursor protein and induced the translocation of SET from the nucleus to the cytoplasm, resulting in tau hyperphosphorylation at residue pT181. Notably, Rac1 was abnormally activated in the hippocampus of 6-week-old 3xTg-AD mice. However, the total protein levels decreased at 7-months. A rescue strategy based on the intranasal administration of Rac1 active peptide at 6.5 months prevented dendritic spine loss. This data suggests the intriguing possibility of a dual role of Rac1 according to the different stages of the pathology. In an initial stage, Rac1 deregulation might represent a triggering co-factor due to the direct effect on Aβ and tau. However, at a later stage of the pathology, it might represent a potential therapeutic target due to the beneficial effect on spine dynamics.

Highlights

  • Alzheimer’s disease (AD) is an age-associated disorder, characterized by the abnormal depositions of hyperphosphorylated tau protein in the form of neurofibrillary tangles (NFT) and of β-amyloid (Aβ) peptide in the form of senile plaques (SP)

  • We evaluated related C3 botulinum toxin substrate 1 (Rac1) protein levels in the plasma of 114 patients affected by AD, 47 subjects with mild cognitive impairment (MCI), and 102 sex and age-matched non-demented controls

  • To investigate the link between Rac1 and cognitive decline, a correlation analysis was performed between Rac1 levels and the Mini-Mental State Examination (MMSE) in AD: Rac1 plasma levels were negatively correlated with MMSE score (r = − 0.208; p = 0.026)

Read more

Summary

Introduction

Alzheimer’s disease (AD) is an age-associated disorder, characterized by the abnormal depositions of hyperphosphorylated tau protein in the form of neurofibrillary tangles (NFT) and of β-amyloid (Aβ) peptide in the form of senile plaques (SP). These thoroughly studied hallmarks are certainly key contributors to the development of the pathology. Rho-GTPases maintain the equilibrium between actin monomer (G-actin) and filament (F-actin) pools [18] This family of proteins comprises of three main members: Ras-related C3 botulinum toxin substrate 1 (Rac1), cell division protein 42 (Cdc42), and Ras homologous member A (RhoA).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call