Abstract

Abrupt reduction of flow (ischemia) leads to endothelial cell membrane depolarization, NADPH oxidase activation, and reactive oxygen species (ROS) generation in isolated rat and mouse lungs and in flow-adapted endothelial cells in vitro. Here we evaluated the role of PI-3-kinase and rac in activation of endothelial NADPH oxidase. Endothelium of isolated perfused mouse lungs labeled with 2',7'-dichlorodihydrofluorescein (H(2)DCF) or hydroethidine (HE) showed increased ROS generation with ischemia; these results were supported by TBARS measurement in whole-lung homogenate and by in vitro studies using flow-adapted mouse pulmonary microvascular endothelial cells. Ischemia-induced ROS generation in intact lung or isolated cells was blocked by pretreatment with Clostridium difficile toxin B, a rac inhibitor, and by wortmannin or LY294002, PI3 kinase inhibitors. In cells, immunofluorescence and immunoblot after subcellular fractionation showed ischemia-induced translocation of rac, p47(phox), and p67(phox) to the plasma membrane. Increased extracellular K(+) also resulted in rac translocation, providing evidence that this pathway is sensitive to alterations of endothelial cell membrane potential. These results indicate that PI-3-kinase and the small G protein rac are involved in the activation of endothelial cell NADPH oxidase that is associated with the acute loss of shear stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.