Abstract

Searching for approximate nearest neighbors (ANN) in the high-dimensional Euclidean space is a pivotal problem. Recently, with the help of fast SIMD-based implementations, Product Quantization (PQ) and its variants can often efficiently and accurately estimate the distances between the vectors and have achieved great success in the in-memory ANN search. Despite their empirical success, we note that these methods do not have a theoretical error bound and are observed to fail disastrously on some real-world datasets. Motivated by this, we propose a new randomized quantization method named RaBitQ, which quantizes D-dimensional vectors into D-bit strings. RaBitQ guarantees a sharp theoretical error bound and provides good empirical accuracy at the same time. In addition, we introduce efficient implementations of RaBitQ, supporting to estimate the distances with bitwise operations or SIMD-based operations. Extensive experiments on real-world datasets confirm that (1) our method outperforms PQ and its variants in terms of accuracy-efficiency trade-off by a clear margin and (2) its empirical performance is well-aligned with our theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.