Abstract

Rabi oscillation is an elementary laser-driven physical process in atoms and artificial atoms from solid-state systems, while it is rarely demonstrated in molecules. Here, we investigate the bond-length-dependent Rabi oscillations with varying Rabi frequencies in strong-laser-field dissociation of H2+. The coupling of the bond stretching and Rabi oscillations makes the nuclei gain different kinetic energies while the electron is alternatively absorbing and emitting photons. The resulting proton kinetic energy spectra show rich structures beyond the prediction of the Floquet theorem and the well-accepted resonant one-photon dissociation pathway. Our study shows that the laser-driven Rabi oscillations accompanied by nuclear motions are essential to understanding the bond-breaking mechanism and provide a time-resolved perspective to manipulate rich dynamics of the strong-laser-field dissociation of molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.