Abstract
The motivation for this theoretical paper comes from recent experiments of a heat transfer system of two thermally coupled rings rotating in opposite directions with equal angular velocities that present anti-parity-time (APT) symmetry. The theoretical model predicted a rest-to-motion temperature distribution phase transition during the symmetry breaking for a particular rotation speed. In this work we show that the system exhibits a parity-time ($\mathcal{PT}$) phase transition at the exceptional point in which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. We analytically solve the heat diffusive system at the exceptional point and show that one can pass through the phase transition that separates the unbroken and broken phases by changing the radii of the rings. In the case of unbroken $\mathcal{PT}$ symmetry the temperature profiles exhibit damped Rabi oscillations at the exceptional point. Our results unveils the behavior of the system at the exceptional point in heat diffusive systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.