Abstract

Rabeprazole is a representative of proton pump inhibitors and widely used in anti-ulcer treatment. However, the effect of Rabeprazole on gut barrier function remains to be identified. In this study, we show that ZO-1 expression is decreased in patients receiving Rabeprazole by immunofluorescence (IF) analysis. Western blotting (WB) and real-time PCR (qPCR) results demonstrate that Rabeprazole treatment leads to a significant downregulation of ZO-1 expression through inhibition of the FOXF1/STAT3 pathway, leading to destroy barrier function, which illustrates a novel pathway that Rabeprazole regulates barrier function in gastric epithelial cells. Mechanistically, Rabeprazole treatment led to a downregulation of STAT3 and FOXF1 phosphorylation, leading to inhibit nuclear translocation and decrease the binding of STAT3 and FOXF1 to ZO-1 promoter, respectively. Most important, endogenous FOXF1 interacted with STAT3, and this interaction was dramatically abolished by Rabeprazole stimulation. Overexpression of STAT3 and FOXF1 in GES-1 cells reversed the inhibitory effect of Rabeprazole on ZO-1 expression, respectively. These finding extended the function of Rabeprazole and established a previously unappreciated mechanism by which the Rabeprazole/FOXF1/STAT3 axis facilitated ZO-1 expression to regulate barrier function, and a comprehensive consideration and evaluation was required in treatment of patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.