Abstract

Detection and identification of viruses and microorganisms in sequencing data plays an important role in pathogen diagnosis and research. However, existing tools for this problem often suffer from high runtimes and memory consumption. We present RabbitV, a tool for rapid detection of viruses and microorganisms in Illumina sequencing datasets based on fast identification of unique k-mers. It can exploit the power of modern multi-core CPUs by using multi-threading, vectorization and fast data parsing. Experiments show that RabbitV outperforms fastv by a factor of at least 42.5 and 14.4 in unique k-mer generation (RabbitUniq) and pathogen identification (RabbitV), respectively. Furthermore, RabbitV is able to detect COVID-19 from 40 samples of sequencing data (255 GB in FASTQ format) in only 320 s. RabbitUniq and RabbitV are available at https://github.com/RabbitBio/RabbitUniq and https://github.com/RabbitBio/RabbitV. Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.