Abstract

The rabbit is a mainstay of regulatory developmental toxicity testing; however, due to the historic absence of experimental tools for this species, there is a dearth of information about its fundamental embryology and the mechanisms underlying developmental toxicity. Relatively recently, there have been advances in the methods of rabbit whole embryo culture (WEC), and this has prompted an increase in understanding of rabbit embryogenesis. Described herein are the methods used to remove early somite-stage embryos (gestation day 9) and sustain their growth for 48h. Although there are similarities to the well-described rodent WEC, there are also important differences. Akin to rodent WEC, the major phases of organogenesis can be investigated, including neural tube development, cardiac looping, segmentation, and the development of the anlagen of the optic and otic regions, craniofacial development, somites, and early limb bud development. Unlike the rodent, rabbit WEC requires the use of an apparatus that allows for the continuous gassing of embryos, and one may observe the expansion and closure of the visceral yolk sac around the embryo. After completion of the culture period, embryos are examined across several growth and developmental parameters including a quantitative morphological scoring system. Embryonic growth and development in the absence of maternal influences allows for the study of the direct action of agents or their metabolites on the embryo. The use of both rodent and rabbit WEC together is a powerful strategy with which to investigate species-specific vulnerabilities to specific agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call