Abstract

The insulin-like growth factor (IGF) system is actively involved in the control of proliferation and differentiation of several myogenic cell lines, and phenotypic differences between myoblasts are associated with modifications of the equilibrium of the components of the IGF system. To determine whether this observation is a physiologic feature that also concerns the phenotypes of ex vivo adult satellite myoblasts in primary cell culture, we investigated the IGF system in rabbit slow-twitch muscle-derived satellite myoblasts (SSM), which differ phenotypically from fast-twitch muscle-derived satellite myoblasts (FSM) by their proliferation and differentiation kinetics in vitro. The expression of IGF-I and IGF-II were similar in SSM and FSM as well as their concentrations measured in cell-conditioned media. Ligand blotting of conditioned media samples indicated the presence of five IGF binding protein (IGFBP) species of Mr 37–40, 32, 30–31, 28, and 24 kDa. The 30–31 kDa doublet was visible in SSM-conditioned medium only and associated with the presence of a 22-kDa protein, which may represent a proteolytic fragment. In contrast, the 32-kDa band was observed in FSM-conditioned medium only. The other IGFBP moieties were present in both SSM- and FSM-conditioned media. Cross-linking experiments revealed the presence of the M6P/IGF-II receptor on both SSM and FSM membranes. We also observed an IGF-I receptor form bearing unusual high affinity for IGF-II: the binding of [125I]IGF-I on this receptor was preferentially displaced by IGF-I but that of [125I]IGF-II was mostly inhibited by IGF-II, suggesting that the two tracers did not bind on the same epitopes. [125I]IGF-II binding to this receptor was greater on SSM than on FSM membranes. Autophosphorylation of WGA-purified receptors revealed an ∼400-kDa band after SDS-PAGE under nonreducing conditions, which corresponded to the α2β2 form of the IGF-I receptor, and two β subunit moieties of Mr 101 and 105 kDa under reducing conditions in both SSM and FSM extracts. Phosphorylation of the 105-kDa moiety was more intensively increased than that of the 101-kDa protein after growth factor stimulation. Basal phosphorylation state of the two β subunits was similarly stimulated by IGF-I and IGF-II and less by insulin. Since both insulin and IGF-I receptors were expressed in FSM and SSM, one of the two β subunits may actually correspond to that of the insulin receptor. We conclude that the IGF system is not considerably affected by the phenotypes of SSM and FSM. The differences observed, which mostly concern IGFBP species, more likely appear as regulatory adaptations than as phenotypic changes targeting the components of the IGF system. © 1996 Wiley-Liss, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call