Abstract

To characterize the microstructural response of the rabbit cornea to changes in intraocular pressure (IOP) by using nonlinear optical microscopy (NLOM). Isolated rabbit corneas were mounted on an artificial anterior chamber in series with a manometer and were hydrostatically pressurized by a reservoir. The chamber was mounted on an upright microscope stage of a custom-built NLOM system for corneal imaging without using exogenous stains or dyes. Second harmonic generation in collagen was used to image through the full thickness of the central corneal stroma at IOPs between 5 and 20 mm Hg. Microstructural morphology changes as a function of IOP were used to characterize the depth-dependent response of the central cornea. Regional collagen lamellae architecture through the full thickness of the stroma was specifically imaged as a function of IOP. Hypotensive corneas showed gaps between lamellar structures that decreased in size with increasing IOP. These morphologic features appear to result from interwoven lamellae oriented along the anterior-posterior axis and parallel to the cornea surface. They appear throughout the full thickness and disappear with tension in the anterior but persist in the posterior central cornea, even at hypertensive IOP. NLOM reveals interwoven collagen lamellae sheets through the full thickness of the rabbit central cornea oriented along the anterior-posterior axis and parallel to the surface. The nondestructive nature of NLOM allows 3-dimensional imaging of stromal architecture as a function of IOP in situ. Collagen morphologic features were used as an indirect measure of depth-dependent mechanical response to changes in IOP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.