Abstract

Pancreatic cancer is an aggressive malignancy, often diagnosed at metastatic stages. Several studies have implicated systemic factors, such as extracellular vesicle release and myeloid cell expansion, in the establishment of pre-metastatic niches in cancer. The Rab27a GTPase is overexpressed in advanced cancers, can regulate vesicle trafficking, and has been previously linked to non-cell autonomous control of tumor growth and metastasis, however, the role of Rab27a itself in the metastatic propensity of pancreatic cancer is not well understood. Here, we have established a model to study how Rab27a directs formation of the pre-metastatic niche. Loss of Rab27a in pancreatic cancer cells did not decrease tumor growth in vivo, but resulted in altered systemic myeloid cell expansion, both in the primary tumors and at the distant organ sites. In metastasis assays, loss of Rab27a expression in tumor cells injected into circulation compromised efficient outgrowth of metastatic lesions. However, Rab27a knockdown cells had an unexpected advantage at initial steps of metastatic seeding, suggesting that Rab27a may alter cell-autonomous invasive properties of the tumor cells. Gene expression analysis of gene expression revealed that downregulation of Rab27a increased expression of genes involved in epithelial-to-mesenchymal transition pathways, consistent with our findings that primary tumors arising from Rab27a knockdown cells were more invasive. Overall, these data reveal that Rab27a can play divergent roles in regulating pro-metastatic propensity of pancreatic cancer cells: by generating pro-metastatic environment at the distant organ sites, and by suppressing invasive properties of the cancer cells.

Highlights

  • Pancreatic cancer is an aggressive malignancy, often diagnosed at metastatic stages

  • To understand how the immunological milieu at distant organ sites is affected by the presence of primary pancreatic tumors, we used a well-established Kras-driven model of spontaneous pancreatic tumorigenesis, LSL-KrasG12D/+; p48Cre/+ (KC), which is not proficient at driving metastasis[2]

  • Since pancreatic cancer cells in spontaneous models have been shown to disseminate to livers, it is possible that cancer cells that migrated from the primary tumor site to liver could contribute to expansion of myeloid cells[3,20]

Read more

Summary

Introduction

Pancreatic cancer is an aggressive malignancy, often diagnosed at metastatic stages. Several studies have implicated systemic factors, such as extracellular vesicle release and myeloid cell expansion, in the establishment of pre-metastatic niches in cancer. Gene expression analysis of gene expression revealed that downregulation of Rab27a increased expression of genes involved in epithelial-to-mesenchymal transition pathways, consistent with our findings that primary tumors arising from Rab27a knockdown cells were more invasive Overall, these data reveal that Rab27a can play divergent roles in regulating pro-metastatic propensity of pancreatic cancer cells: by generating pro-metastatic environment at the distant organ sites, and by suppressing invasive properties of the cancer cells. The field of pancreatic cancer biology has benefited tremendously from the development of spontaneous mouse models of pancreatic carcinogenesis, which feature pancreas-specific endogenous expression of oncogenic Kras and the tumor suppressor p53, and faithfully recapitulate formation and histopathological progression of PDA to metastasis[2,3] Both human and mouse PanINs feature extensive remodeling of surrounding microenvironment characterized by pronounced influx of immune cells, which has been shown to shape inflammatory and immunosuppressive pro-tumorigenic milieu[4,5,6].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call