Abstract

Rab22 is a small GTPase that is localized on early endosomes and regulates early endosomal sorting. This study reports that Rab22 promotes nerve growth factor (NGF) signaling-dependent neurite outgrowth and gene expression in PC12 cells by sorting NGF and the activated/phosphorylated receptor (pTrkA) into signaling endosomes to sustain signal transduction in the cell. NGF binding induces the endocytosis of pTrkA into Rab22-containing endosomes. Knockdown of Rab22 via small hairpin RNA (shRNA) blocks NGF-induced pTrkA endocytosis into the endosomes and gene expression (VGF) and neurite outgrowth. Overexpression of human Rab22 can rescue the inhibitory effects of the Rab22 shRNA, suggesting a specific Rab22 function in NGF signal transduction, rather than off-target effects. Furthermore, the Rab22 effector, Rabex-5, is necessary for NGF-induced neurite outgrowth and gene expression, as evidenced by the inhibitory effect of shRNA-mediated knockdown of Rabex-5. Disruption of the Rab22-Rabex-5 interaction via overexpression of the Rab22-binding domain of Rabex-5 in the cell also blocks NGF-induced neurite outgrowth, suggesting a critical role of Rab22-Rabex-5 interaction in the biogenesis of NGF-signaling endosomes to sustain the signal for neurite outgrowth. These data provide the first evidence for an early endosomal Rab GTPase as a positive regulator of NGF signal transduction and cell differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.