Abstract

The Golgi complex is a highly dynamic organelle that regulates various cellular activities and yet maintains a distinct structure. Multiple proteins participate in Golgi structure/organization including the small GTPase Rab2. Rab2 is found on the cis/medial Golgi compartments and the endoplasmic reticulum-Golgi intermediate compartment. Interestingly, Rab2 gene amplification occurs in a wide range of human cancers and Golgi morphological alterations are associated with cellular transformation. To learn how Rab2 ‘gain of function’ influences the structure/activity of membrane compartments in the early secretory pathway that may contribute to oncogenesis, NRK cells were transfected with Rab2B cDNA. We found that Rab2B overexpression had a dramatic effect on the morphology of pre- and early Golgi compartments that resulted in a decreased transport rate of VSV-G in the early secretory pathway. We monitored the cells for the autophagic marker protein LC3 based on the findings that depressed membrane trafficking affects homeostasis. Morphological and biochemical studies confirmed that Rab2 ectopic expression stimulated LC3-lipidation on Rab2-containing membranes that was dependent on GAPDH and utilized a non-canonical LC3-conjugation mechanism that is nondegradative. Golgi structural alterations are associated with changes in Golgi-associated signalling pathways. Indeed, Rab2 overexpressing cells had elevated Src activity. We propose that increased Rab2 expression facilitates cis Golgi structural changes that are maintained and tolerated by the cell due to LC3 tagging, and subsequent membrane remodeling triggers Golgi associated signaling pathways that may contribute to oncogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.