Abstract

Hepatitis C virus (HCV) is a single-stranded RNA virus that replicates on endoplasmic reticulum-derived membranes. HCV particle assembly is dependent on the association of core protein with cellular lipid droplets (LDs). However, it remains uncertain whether HCV assembly occurs at the LD membrane itself or at closely associated ER membranes. Furthermore, it is not known how the HCV replication complex and progeny genomes physically associate with the presumed sites of virion assembly at or near LDs. Using an unbiased proteomic strategy, we have found that Rab18 interacts with the HCV nonstructural protein NS5A. Rab18 associates with LDs and is believed to promote physical interaction between LDs and ER membranes. Active (GTP-bound) forms of Rab18 bind more strongly to NS5A than a constitutively GDP-bound mutant. NS5A colocalizes with Rab18-positive LDs in HCV-infected cells, and Rab18 appears to promote the physical association of NS5A and other replicase components with LDs. Modulation of Rab18 affects genome replication and possibly also the production of infectious virions. Our results support a model in which specific interactions between viral and cellular proteins may promote the physical interaction between membranous HCV replication foci and lipid droplets.

Highlights

  • Hepatitis C virus (HCV) is a positive-sense RNA virus in the family Flaviviridae that is estimated to chronically infect up to 170 million people worldwide

  • HCV replication occurs at membranes derived from the endoplasmic reticulum, while HCV virion assembly is believed to occur at or near cellular lipid droplets

  • We report that Rab18, a lipid droplet-associated cellular protein, binds to the viral protein NS5A, and that the silencing of Rab18 reduces the association of other HCV replication complex components with lipid droplets

Read more

Summary

Introduction

Hepatitis C virus (HCV) is a positive-sense RNA virus in the family Flaviviridae that is estimated to chronically infect up to 170 million people worldwide. The 9.6 kb genome encodes three structural and seven nonstructural proteins. One of these nonstructural proteins, NS5A, is an RNA-binding phosphoprotein essential for both viral replication and viral particle assembly [1]. It is composed of a N-terminal amphipathic helix that mediates membrane association [2,3,4] followed by three domains separated by two low-complexity sequences [5]. Domain I is responsible for NS5A dimerization [6] and has been proposed to contribute to RNA binding [7,8]. A role for this domain in HCV RNA replication has been supported by the finding that many adaptive mutations that enhance HCV replication in cell culture map to Domain I [9,10], In contrast, the majority of Domain II and the entirely of Domain III are dispensable for RNA replication, while deletion of Domain III virtually abolishes viral particle assembly [1]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.