Abstract
The cochlea hair cells transform mechanic sounds to neural signals with a remarkable sensitivity and resolution. This is achieved via the precisely sculpted mechanotransduction apparatus of the hair cells and the supporting structure of the cochlea. The shaping of the mechanotransduction apparatus, the staircased stereocilia bundles on the apical surface of the hair cells, requires an intricate regulatory network including planar cell polarity (PCP) and primary cilia genes in orienting stereocilia bundles and building molecular machinery of the apical protrusions. The mechanism linking these regulatory components is unknown. Here, we show that a small GTPase known for its role in protein trafficking, Rab11a, is required for ciliogenesis in hair cells during development in mice. In addition, in the absence of Rab11a, stereocilia bundles lost their cohesion and integrity, and mice are deaf. These data indicate an essential role of protein trafficking in the formation of hair cell mechanotransduction apparatus, implicating a role of Rab11a or protein trafficking in linking the cilia and polarity regulatory components with the molecular machinery in building the cohesive and precisely shaped stereocilia bundles.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.