Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. The pathophysiology of this disease is the formation of the Lewy body, mostly consisting of alpha-synuclein and dysfunctional mitochondria. There are two common PD-associated genes, Pink1 (encoding a mitochondrial ser/thr kinase) and Parkin (encoding cytosolic E3-ubiquitin ligase), involved in the mitochondrial quality control pathway. They assist in removing damaged mitochondria via selective autophagy (mitophagy) which if unchecked, results in the formation of protein aggregates in the cytoplasm. The role of Rab11, a small Ras-like GTPase associated with recycling endosomes, in PD is still unclear. In the present study, we used the PD model of Drosophila melanogaster and found that Rab11 has a crucial role in the regulation of mitochondrial quality control and endo-lysosomal pathways in association with Parkin and Pink1 and Rab11 acting downstream of Parkin. Additionally, overexpression of Rab11 in parkin mutant rescued the mitochondrial impairment, suggesting the therapeutic potential of Rab11 in PD pathogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.