Abstract

A growing body of evidence implicates essential roles for small molecular weight G-proteins (e.g., Cdc42, Rac1, Arf6 and Rab3A and Rab27A) in islet β-cell function including glucose-stimulated insulin secretion (GSIS). One of the known mechanisms for optimal activation of small G-proteins involves post-translational prenylation, which is mediated by farnesyltransferase (FTase) and geranylgeranyl transferases (GGTases I and II). The FTase catalyzes incorporation of a 15-carbon farnesyl group while the GGTase mediates incorporation of a 20-carbon geranylgeranyl group into the C-terminal cysteines of G-proteins. The FTase, GGTase I and GGTase II prenylate Ras, Cdc42/Rac1, and Rab G-proteins, respectively. While considerable evidence exists on FTase/GGTase I-mediated regulation of GSIS, very little is known about GGTase II (also referred to as Rab GGTase; RGGT) and its regulatory proteins in the cascade of events leading to GSIS. Herein, we provide the first immunological evidence to suggest expression of α- and β-subunits of RGGT in clonal INS 832/13 β-cells, normal rat islets and human islets. Furthermore, Rab escort protein1 (REP1), which has been shown to be critical for prenylation of Rab G-proteins, is also expressed in these cells. Furthermore, evidence is presented to suggest that siRNA-mediated knockdown of α- or β-subunits of RGGT and REP1 markedly attenuates GSIS in INS 832/13 cells. These findings provide the first evidence in support of key roles for RGGT and its regulatory proteins in GSIS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call