Abstract

To determine the efficacy of rAAV.sFlt-1-mediated gene therapy in a transgenic mouse model of retinal neovascularization (trVEGF029) and to assess whether rAAV.sFlt-1 administration generated any deleterious, long-lasting immune response that could affect efficacy. trVEGF029 mice were injected subretinally with rAAV.sFlt-1 or phosphate-buffered saline. Fluorescein angiography and electroretinography were used to compare the extent of fluorescein leakage from retinal vessels and retinal function, respectively. A group of eyes was enucleated, and the retinal vasculature and morphology were studied by confocal and light microscopy. Cells were isolated from the posterior eyecups and spleens of a further group, and immune cell subset populations were investigated by flow cytometry. sFlt-1 protein levels in the eyes were evaluated by ELISA. After a single rAAV.sFlt-1 injection, sFlt-1 protein levels were upregulated, and there was a reduction in fluorescein leakage from the retinal vessels and an improvement in retinal function. Confocal microscopy of isolectin-IB4-labeled retinal wholemounts showed more normal-appearing capillary beds in rAAV.sFlt-1-injected than in PBS-injected trVEGF029 mouse eyes. Light microscopy demonstrated retinal morphology preservation, with fewer aberrant vessels invading the outer nuclear layer of rAAV.sFlt-1-injected eyes. Furthermore, the immune response to subretinal injection of rAAV.sFlt-1 was limited to a transient increase in CD45(+) leukocytes that disappeared by 4 weeks after injection. This transient increase was localized to the eye and did not affect long-term therapeutic efficacy. The data support the notion that rAAV.sFlt-1 gene therapy is safe and effective for the long-term inhibition of deleterious blood vessel growth in the eye.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call