Abstract
Precise genomic editing through the combination of CRISPR/Cas systems and recombinant adeno-associated virus (rAAV)-delivered homology directed repair (HDR) donor templates represents a powerful approach. However, the challenge of effectively suppressing leaky transcription from the rAAV vector, a phenomenon associated to cytotoxicity, persists. In this study, we demonstrated substantial promoter activities of various homology arms and inverted terminal repeats (ITR). To address this issue, we identified a novel rAAV variant, Y704T, which not only yields high-vector quantities but also effectively suppresses in cis mRNA transcription driven by a robust promoter. The Y704T variant maintains normal functionality in receptor interaction, intracellular trafficking, nuclear entry, uncoating, and second-strand synthesis, while specifically exhibiting defects in transcription. Importantly, this inhibitory effect is found to be independent of ITR, promoter types, and RNA polymerases. Mechanistic studies unveiled the involvement of Valosin Containing Protein (VCP/p97) in capsid-mediated transcription repression. Remarkably, the Y704T variant delivers HDR donor templates without compromising DNA replication ability and homologous recombination efficiency. In summary, our findings enhance the understanding of capsid-regulated transcription and introduce novel avenues for the application of the rAAV-CRISPR/Cas9 system in human gene therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.