Abstract

The rate-limiting step in the recovery of the photoreceptor light response is the hydrolysis of GTP by transducin, a reaction that is accelerated by the RGS9-Gbeta5 complex, and its membrane anchor, R9AP. Similar complexes, including RGS7, RGS11, and Gbeta5, are found in retinal ON-bipolar cell dendrites. Here, we present evidence that R9AP is also expressed in the dendritic tips of ON-bipolar cells. Immunofluorescent staining for R9AP revealed a punctate pattern of labeling in the outer plexiform layer, where it colocalized with mGluR6. In photoreceptors, R9AP is required for proteolytic stability of the entire regulator of G protein signaling complex, and we found that genetic deletion of R9AP also results in a marked reduction in the levels of RGS11 and Gbeta5 in the bipolar cell dendrites; the level of RGS7 was unaffected, suggesting the presence of another interaction partner to stabilize RGS7. To determine the effect of R9AP deletion on the response kinetics of ON-bipolar cells, we compared the electroretinogram (ERG) between wild-type and R9AP-deficient mice. The ERG b-wave, reflecting ON-bipolar cell activity, was delayed and larger in the R9AP-deficient mice. Our data indicate that R9AP is required for stable expression of RGS11-Gbeta5 in ON-bipolar cell dendrites. Furthermore, they suggest that the RGS11-Gbeta5-R9AP complex accelerates the initial ON-bipolar cell response to light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.