Abstract
In analog computation there is a tendency not only to strive for the highest possible accuracy, but very often the ciiterion for accepting an analog scheme also requires minimizing the number of computer components and the duration of the problem preparation time. On the other hand, in analog or hybrid computation every sophistication intended to improve accuracy usually calls for more computer equipment, and every sophistication introduced to reduce comptuter equipment usually requires more time for problem preparation. Having this in mind, the method of Bessel function generation, discussed in Bingulac and Humol (Reference 5 in Hausner's paper), may be considered as the first degree of sophistication, since in developing this method the only criterion was to reduce the complexity of the analog computer scheme, thereby decreasing the number of computer components. Van Remoartere's method, 2 however, represents the second degree of sophistication because a) it divides the whole range of the independent vatiable into two subintervals, and b) in the first subinterval it approximates the solution by a Taylor series. This of course improves the accuracy but on the other hand, the number of analog computer components increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.