Abstract

AimsThe M3 muscarinic acetylcholine receptor (M3R) is a G protein-coupled receptor that is expressed in cases of non-small cell lung cancer (NSCLC). Previous studies demonstrated that M3R antagonists reduce the proliferation of NSCLC. However, how antagonists inhibit the NSCLC proliferation and migration is still little known. This study aims to investigate the mechanism of M3R involved in the growth of NSCLC. Main methodsThe CRISPR/Cas9 was used to knock out (KO) the M3R gene. A real-time cell analyzer (RTCA) was used to record the proliferation of NSCLC cells. The migration and cell cycle of NSCLC cells were evaluated with scratch test and flow cytometry (FCM), respectively. Antibody microarray analysis was performed to detect the expression of proteins after antagonizing M3R and knocking out of M3R, subsequently some of these important proteins were verified by western blot. Key findingsThe proliferation and migration of NSCLC cells were inhibited by M3R antagonist R2-8018 and knocking out of M3R. Antagonism or knocking out of M3R reduced the phosphorylation of EGFR. Moreover, c-Src and β-arrestin-1 are involved in the mechanism of how the inhibition of M3R affects EGFR in NSCLC. Further study demonstrated that PI3K/AKT and MEK/ERK signal pathways are involved in M3R-induced EGFR transactivation in NSCLC, and the molecules involved in the cell cycle progression and migration of NSCLC cells were identified. SignificanceThis further understanding of the relationship between M3R and NSCLC facilitates the design of therapeutic strategy with M3R antagonist as an adjuvant drug for NSCLC treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.