Abstract

Progressive rod-cone degeneration (PRCD) is a photoreceptor outer segment (OS) disc-specific protein essential for maintaining OS structures while contributing to rhodopsin packaging densities and distribution in disc membranes. Previously, we showed PRCD undergoing palmitoylation at the sole cysteine (Cys2), where a mutation linked with retinitis pigmentosa (RP) in humans and dogs demonstrates the importance of palmitoylation for protein stability and trafficking to the OS. We demonstrate a mutation, in the polybasic region (PBR) of PRCD (Arg17Cys) linked with RP where an additional lipidation is observed through acyl-RAC. Immunolocalization of transiently expressed R17C in hRPE1 cells depicts similar characteristics to wild-type PRCD; however, a double mutant lacking endogenous palmitoylation at Cys2Tyr with Arg17Cys is comparable to the C2Y protein as both aggregate, mislocalized to the subcellular compartments within the cytoplasm. Subretinal injection of PRCD mutant constructs followed by electroporation in murine retina exhibit mislocalization in the inner segment. Despite being additionally lipidated and demonstrating strong membrane association, the mutation in the PBR affects protein stability and localization to the OS. Acylation within the PBR alone neither compensates for protein stability nor trafficking, revealing defects in the PBR likely lead to dysregulation of PRCD protein associated with blinding diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call