Abstract

In [PS] a new family of subalgebras of the extended ${\Bbb Z}_2$-vertex colored algebras, called Klein-$4$ diagram algebras, are studied. These algebras are the centralizer algebras of $G_n:=({\Bbb Z}_2 \times {\Bbb Z}_2) \wr S_n$ when it acts on $V^{\otimes k},$ where $V$ is the signed permutation module for $G_n.$ In this paper we give the Robinson-Schensted correspondence for $G_n$ on $4$-partitions of $n,$ which gives a bijective proof of the identity $\sum_{[\lambda] \vdash n } (f^{[\lambda]})^2 = 4^n n!,$ where $f^{[\lambda]}$ is the degree of the corresponding representation indexed by $[\lambda]$ for $G_n.$ We give proof of the identity $2^kn^k = \sum_{[\lambda] \in \Gamma_{n,k}^G} f^{[\lambda]} m_{k}^{[\lambda]}$ where the sum is over $4$-partitions which index the irreducible $G_n$-modules appearing in the decomposition of $V^{\otimes k} $ and $m_{k}^{[\lambda]}$ is the multiplicity of the irreducible $G_n$-module indexed by $[\lambda ].$ Also, we develop an R-S correspondence for the Klein-$4$ diagram algebras by giving a bijection between the diagrams in the basis and pairs of vacillating tableau of same shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.