Abstract
R-phycoerythrin (R-PE), a pigment complex found in red algae, was extracted and purified from a newly identified red alga, Colaconema formosanum, and its bioactivities were examined. It was revealed that R-PE treatment resulted in high cell viability (>70%) to the mammalian cell lines NIH-3T3, RBL-2H3, RAW264.7, and Hs68, and had no effect on cell morphology in NIH-3T3 cells. Its suppression effect was insignificant on the production of IL-6 and TNF-α in lipopolysaccharides-stimulated RAW264.7 cells. However, calcium ionophore A23187-induced β-hexosaminidase release was effectively inhibited in a dose-dependent manner in RBL-2H3 cells. Additionally, it was revealed to be non-irritating to bionic epidermal tissues. Notably, procollagen production was promoted in Hs68 cells. Overall, the data revealed that R-PE purified from C. formosanum exhibits anti-allergic and anti-aging bioactivities with no observed consequential toxicity on multiple mammalian cell lines as well as epidermal tissues, suggesting that this macromolecule is a novel material for potential cosmetic use.
Highlights
Algae are photosynthetic organisms found on land and in the ocean
Purified R-PE was obtained from C. formosanum, and similar to the R-PE extracted from the Mediterranean red algae Corallina elongata [41], characteristic peaks were observed at 280, 498, and 566 nm, but not 620 nm, indicating that the purified R-PE exhibits high purity and a low PC content (λ: 610–620 nm) [42]
The results indicated that R-PE purified from C. formosanum could stimulate the secretion of type-I collagen by the human fibroblast cells, resulting in an anti-aging effect
Summary
Algae are photosynthetic organisms found on land and in the ocean. As a part of the primary producers in the ocean, algae provide oxygen and nutrients for other organisms, regulating the marine ecosystem. Macroalgae ( known as seaweeds) grow in coastal areas and do not possess typical organs commonly found in terrestrial plants [1]. Macroalgae can be distinguished by their pigment and are categorized into three groups, namely Chlorophyta (green algae), Rhodophyta (red algae), and class Phaeophyceae (brown algae) of Ochrophyta [1]. The growth rate of macroalgae is fairly rapid, and it is feasible to manipulate their growth conditions to control the production of bioactive compounds such as proteins, polyphenols, and pigments [2]. There is an increasing preference for natural ingredients over synthetic compounds in cosmetics, because natural ingredients tend to be safer compared to the latter
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.