Abstract

As evidenced by ion-selective electrode potentiometry, the hexameric R-phycoerythrin (RPE) molecule binds 20-4000 cadmium ions (Cd2+) depending on Cd2+ concentration in the solution. Cadmium ions bound to RPE serve as nuclei of cadmium sulfide crystallization in the presence of sulfide ions. According to spectrometric, electron-microscopic and capillary electrophoresis data, the particles are heteroaggregates of 3.2 x 6 nm in size. The fact that the particle size fits the size of the central tunnel of the RPE molecule and the similarity between the electrophoretic patterns of free RPE and the RPE-CdS complex indicate that the tunnel space, limiting the crystal growth, is the most probable site of nanoparticle formation. Properties of the nanoparticles can be modified by changing temperature, pH, etc. It is concluded that RPE can be used as a reagent for detoxification of cadmium ions and a matrix for synthesis of elongated CdS nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.