Abstract

The combinatorial fabrication and high-throughput characterization of a Ti–Ni–Cu shape memory thin film composition spread led to the discovery of the shape memory alloy Ti 39Ni 45Cu 16, which exhibits a single B2 → R-phase transformation above 25 °C with a thermal hysteresis width <1 K. Here we show that the thin film results correctly predict the phase transformation behavior of bulk material upon cooling from the high temperature phase. For both thin film and bulk, a two-step B2 → R-phase → B19′ transformation was found. The B2 → R-phase transformation can be exploited independently, due to a significant temperature separation of the two transformation steps. The shape memory effect in both thin film and bulk samples is limited due to the two-phase microstructure. Transmission electron microscopy investigations revealed the existence of Ti(Ni,Cu) 2 precipitates within the TiNi(Cu) matrix, which are concluded to be responsible for the R-phase formation and separation of the transformation steps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.