Abstract
Neural stem/progenitor cells (NSPCs) are present in the mammalian brain throughout life and are involved in neurodevelopment and central nervous system repair. Although typical epigenetic signatures, including DNA methylation, histone modifications, and microRNAs, play a pivotal role in regulation of NSPCs, several of the epigenetic regulatory mechanisms of NSPCs remain unclear. Thus, defining a novel epigenetic feature of NSPCs is crucial for developing stem cell therapy to address neurologic disorders caused by injury. In this study, we aimed to define the R-loop, a three-stranded nucleic acid structure, as an epigenetic characteristic of NSPCs during neurodevelopment. Our results demonstrated that R-loop levels change dynamically throughout neurodevelopment. Cells with high levels of R-loops consistently decreased and were enriched in the area of neurogenesis. Additionally, these cells costained with SOX2 during neurodevelopment. Furthermore, these cells with high R-loop levels expressed Ki-67 and exhibited a high degree of overlap with the transcriptional activation markers, H3K4me3, ser5, and H3K27ac. These findings suggest that R-loops may serve as an epigenetic feature for transcriptional activation in NSPCs, indicating their role in gene expression regulation and neurogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.