Abstract
We synthesized a reduced graphene oxide (r-GO) multi-walled carbon nanotube (MWCNTs) nanocomposite film via layer by layer (LBL) assembly. This structure was prepared by vacuum filtration and heat-treated at a low temperature of 500°C. The morphology of the sample was determined by field emission electron spectroscopy (FE-SEM). The structural detail and the chemical analysis were characterized by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The cyclic voltammetry (CV) curve of r-GO/MWCNTs nanocomposite appeared nearly rectangular in shape. The current density (A/g) was gradually increased by increasing the scan rate of the voltage, as high as a scan rate of 500 mVs-1. At a current density of 10 mAg-1, the specific capacitance of the nanocomposite, estimated by galvanostatic (GA) charge/discharge measurement, is 150 Fg-1. These nanocomposites can be developed for supercapacitor electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.