Abstract

An RD $\text{RE}=\text{rare earth}$ ) wires for ultrahigh-field (UHF) magnetic resonance imaging (MRI) systems is described. Our targets are 9.4-T MRI systems for whole-body imaging and brain imaging. REBCO wires are promising components for UHF-MRI because REBCO wires have high critical current density in high magnetic fields and high strength against hoop stresses, which allows MRI magnets to be smaller and lighter than conventional ones. The aim of the project is to establish basic magnet technologies for adapting REBCO coils for UHF-MRI. The project term is three years, and this year is the final year. We have already demonstrated the generation of an 8.27-T magnetic field with a small test coil composed of 22 REBCO pancake coils. A magnetic field spatial distribution with inhomogeneity of several hundreds of parts per million within 100-mm diameter spherical volume (DSV) was demonstrated with a 1-T model magnet. A stable magnetic field of a few parts per million per hour was also demonstrated with the 1-T model magnet. The targets of the project, to be achieved by March 2016, are to demonstrate the generation of a 9.4-T field with the small REBCO coil, and to demonstrate a homogeneous magnetic field in 200-mm DSV with a 1.5-T magnet having three pairs of split coils. Imaging will be performed with the 1.5-T magnet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call