Abstract

T(*)2 mapping or R(*)2 mapping for brain function offers advantages such as providing quantitative measurements independent of the MRI acquisition parameters (e.g. echo time TE). However, magnetic field susceptibility in the human brain can prevent an accurate estimation of R(*)2, which in turn impacts the ability to study brain function. The present work investigates the effects of in-plane magnetic susceptibility-induced magnetic field gradients on R(*)2 decay. An iterative method is developed for R(*)2 estimation with an increased robustness to field inhomogeneity. The new method is further tested in a visual fMRI experiment with and without magnetic field gradients and its performance is compared to a standard BOLD fMRI and a BOLD fMRI based on echo summation. Reduced sensitivity in fMRI to in-plane magnetic gradients is obtained with the present methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call