Abstract

Ternary quantum processors offer significant potential computational advantages over conventional qubit technologies, leveraging the encoding and processing of quantum information in qutrits (three-level systems). To evaluate and compare the performance of such emerging quantum hardware it is essential to have robust benchmarking methods suitable for a higher-dimensional Hilbert space. We demonstrate extensions of industry standard randomized benchmarking (RB) protocols, developed and used extensively for qubits, suitable for ternary quantum logic. Using a superconducting five-qutrit processor, we find an average single-qutrit process infidelity of 3.8×10^{-3}. Through interleaved RB, we characterize a few relevant gates, and employ simultaneous RB to fully characterize crosstalk errors. Finally, we apply cycle benchmarking to a two-qutrit CSUM gate and obtain a two-qutrit process fidelity of 0.85. Our results present and demonstrate RB-based tools to characterize the performance of a qutrit processor, and a general approach to diagnose control errors in future qudit hardware.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.