Abstract

Accurate prediction of micro-pKa values is crucial for understanding and modulating the acidity and basicity of organic molecules, with applications in drug discovery, materials science, and environmental chemistry. This work introduces QupKake, a novel method that combines graph neural network models with semiempirical quantum mechanical (QM) features to achieve exceptional accuracy and generalization in micro-pKa prediction. QupKake outperforms state-of-the-art models on a variety of benchmark data sets, with root-mean-square errors between 0.5 and 0.8 pKa units on five external test sets. Feature importance analysis reveals the crucial role of QM features in both the reaction site enumeration and micro-pKa prediction models. QupKake represents a significant advancement in micro-pKa prediction, offering a powerful tool for various applications in chemistry and beyond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.