Abstract

Primitive axial algebras of Monster type are a class of non-associative algebras with a strong link to finite (especially simple) groups. The motivating example is the Griess algebra, with the Monster as its automorphism group. A crucial step towards the understanding of such algebras is the explicit description of the 2-generated symmetric objects. Recent work of Yabe, and Franchi and Mainardis shows that any such algebra is either explicitly known, or is a quotient of the infinite-dimensional Highwater algebra H, or its characteristic 5 cover Hˆ.In this paper, we complete the classification of symmetric axial algebras of Monster type by determining the quotients of H and Hˆ. We proceed in a unified way, by defining a cover of H in all characteristics. This cover has a previously unseen fusion law and provides an insight into why the Highwater algebra has a cover which is of Monster type only in characteristic 5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.