Abstract

Quorum sensing signals have been widely explored in microbial communities. However, the impact of chain elongation microorganisms by quorum sensing signals of acyl homoserine lactones (AHLs) is still unclear. Here, chain elongation consortia under conditions of AHLs addition were examined in microbial electrosynthesis (MES) through 16S rRNA microbial community and metatranscriptomic analyses. The research found that N-octanoyl-L-homoserine lactone (C8-HSL) increased the caproate concentration by 61.48 % as relative to the control and showed the best performance among all the tested AHLs in MES. AHLs enhanced the redox activity of cathodic electroactive biofilms (EABs), which could be due to increased attachment of electrode microorganisms and ratios of live/dead cells. Microbial community analysis showed that AHLs increased the relative abundance of Negativicutes obviously. Meanwhile, metatranscriptomic analysis revealed that C8-HSL significantly improved CoA − transferase activity and regulated valine, leucine, isoleucine biosynthesis, and carbon metabolism. Besides, C8-HSL was beneficial to the chain elongation metabolic pathways, especially the fatty acid biosynthesis (FAB) pathway. These results not only provide metabolic insights into AHLs regulating chain elongation consortia, but also propose potential strategies for speeding up the formation of MES cathodic biofilm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call