Abstract

SummaryElectroactive biofilms (EABs) play an important role in bioelectrochemical systems due to their abilities to generate electrons and perform extracellular electron transfer (EET). Here, we investigated the effects of quorum sensing (QS) signals on power output, chlortetracycline degradation, and structure of EABs in MFCs treating antibiotic wastewater. The voltage output of MFCs with C4-HSL and PQS increased by 21.57% and 13.73%, respectively, compared with that without QS signals. The chlortetracycline degradation efficiency in closed-circuit MFCs with C4-HSL and PQS increased by 56.53% and 50.04%, respectively, which resulted from the thicker biofilms, higher biomass, and stronger activities. Additionally, QS signals induced the heterogeneous distribution of EPS for a balance between self-protection and EET under environmental pressure. Geobacter prevailed by the addition of QS signals to resist high chlortetracycline concentration. Our results provided a broader understanding on regulating EABs within electrode interface to improve their performance for environmental remediation and clean energy development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call