Abstract

Here, we show that quorum sensing (QS) modulates the current generation of the anode-respiring bacterium Pseudomonas aeruginosa because it controls the production of phenazines, which mediate the electron transfer to the anode. The current generation by a wildtype (WT) strain P. aeruginosa PA14 and the GacS/GacA protein-regulatory mutant retS was investigated under different environmental conditions. The retS mutant generated significantly higher current (45-fold) than the WT under anaerobic conditions. Anaerobic current generation by the WT was 28-fold higher with extraneously supplied lactones (a QS-signaling molecule). Compared to anaerobic conditions, the WT with some oxygen (microaerobic conditions) exhibited enhanced phenazine production (39-fold) and current levels (48-fold). Iron-rich medium and microaerobic conditions had a negative impact on current generation by retS. All these results were directly linked to QS activity in P. aeruginosa, thus, demonstrating the importance of this bacterial communication system for current generation in BESs. We also show that BESs represent a new tool for real-time investigation of phenazine-related QS activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.