Abstract

In recent years, the catalytic dry reforming of methane (DRM) has increasingly come into academic focus. The interesting aspect of this reaction is seemingly the conversion of CO2 and methane, two greenhouse gases, into a valuable synthesis gas (syngas) mixture with an otherwise unachievable but industrially relevant H2/CO ratio of one. In a possible scenario, the chemical conversion of CO2 and CH4 to syngas could be used in consecutive reactions to produce synthetic fuels, with combustion to harness the stored energy. Although the educts of DRM suggest a superior impact of this reaction to mitigate global warming, its potential as a chemical energy converter and greenhouse gas absorber has still to be elucidated. In this review article, we will provide insights into the industrial maturity of this reaction and critically discuss its applicability as a cornerstone in the energy transition. We derive these insights from assessing the current state of research and knowledge on DRM. We conclude that the entire industrial process of syngas production from two greenhouse gases, including heating with current technologies, releases at least 1.23 moles of CO2 per mol of CO2 converted in the catalytic reaction. Furthermore, we show that synthetic fuels derived from this reaction exhibit a negative carbon dioxide capturing efficiency which is similar to burning methane directly in the air. We also outline potential applications and introduce prospective technologies toward a net-zero CO2 strategy based on DRM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.